Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 926
Filtrar
1.
J Biol Chem ; 298(5): 101853, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331738

RESUMO

There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein-protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.


Assuntos
Peptídeo Sintases , Purinas , Humanos , Amidofosforribosiltransferase , Células HeLa , Peptídeo Sintases/metabolismo , Purinas/biossíntese
2.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
3.
Microbiol Spectr ; 9(3): e0080421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34935415

RESUMO

Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.


Assuntos
Biofilmes , Meios de Cultura/metabolismo , Enterococcus faecalis/fisiologia , Purinas/biossíntese , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Meios de Cultura/química , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
4.
mBio ; 12(6): e0208121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724823

RESUMO

Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinically challenging subset of invasive, life-threatening S. aureus infections. We have recently demonstrated that purine biosynthesis plays an important role in such persistent infections. Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger that regulates many cellular pathways in bacteria. However, whether there is a regulatory connection between the purine biosynthesis pathway and c-di-AMP impacting persistent outcomes was not known. Here, we demonstrated that the purine biosynthesis mutant MRSA strain, the ΔpurF strain (compared to its isogenic parental strain), exhibited the following significant differences in vitro: (i) lower ADP, ATP, and c-di-AMP levels; (ii) less biofilm formation with decreased extracellular DNA (eDNA) levels and Triton X-100-induced autolysis paralleling enhanced expressions of the biofilm formation-related two-component regulatory system lytSR and its downstream gene lrgB; (iii) increased vancomycin (VAN)-binding and VAN-induced lysis; and (iv) decreased wall teichoic acid (WTA) levels and expression of the WTA biosynthesis-related gene, tarH. Substantiating these data, the dacA (encoding diadenylate cyclase enzyme required for c-di-AMP synthesis) mutant strain (dacAG206S strain versus its isogenic wild-type MRSA and dacA-complemented strains) showed significantly decreased c-di-AMP levels, similar in vitro effects as seen above for the purF mutant and hypersusceptible to VAN treatment in an experimental biofilm-related MRSA endovascular infection model. These results reveal an important intersection between purine biosynthesis and c-di-AMP that contributes to biofilm-associated persistence in MRSA endovascular infections. This signaling pathway represents a logical therapeutic target against persistent MRSA infections. IMPORTANCE Persistent endovascular infections caused by MRSA, including vascular graft infection syndromes and infective endocarditis, are significant and growing public health threats. A particularly worrisome trend is that most MRSA isolates from these patients are "susceptible" in vitro to conventional anti-MRSA antibiotics, such as VAN and daptomycin (DAP), based on Clinical and Laboratory Standards Institute breakpoints. Yet, these antibiotics frequently fail to eliminate these infections in vivo. Therefore, the persistent outcomes in MRSA infections represent a unique and important variant of classic "antibiotic resistance" that is only disclosed during in vivo antibiotic treatment. Given the high morbidity and mortality associated with the persistent infection, there is an urgent need to understand the specific mechanism(s) of this syndrome. In the current study, we demonstrate that a functional intersection between purine biosynthesis and the second messenger c-di-AMP plays an important role in VAN persistence in experimental MRSA endocarditis. Targeting this pathway may represent a potentially novel and effective strategy for treating these life-threatening infections.


Assuntos
AMP Cíclico/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Infecção Persistente/microbiologia , Purinas/biossíntese , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Vias Biossintéticas , Daptomicina/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Sistemas do Segundo Mensageiro
5.
Nat Metab ; 3(11): 1512-1520, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799699

RESUMO

Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that MTR is only a minor source of methionine in cell culture, tissues or xenografted tumours. Instead, MTR is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumour cells leads to folate trapping, purine synthesis stalling, nucleotide depletion and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating THF for use in one-carbon metabolism.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Neoplasias/metabolismo , Tetra-Hidrofolatos/metabolismo , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Linhagem Celular Tumoral , Proliferação de Células , Ácido Fólico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , Metionina/metabolismo , Metilação , Mutação , Neoplasias/etiologia , Purinas/biossíntese , Deficiência de Vitamina B 12/metabolismo
6.
Nat Commun ; 12(1): 6176, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702840

RESUMO

Serine is a non-essential amino acid that is critical for tumour proliferation and depletion of circulating serine results in reduced tumour growth and increased survival in various cancer models. While many cancer cells cultured in a standard tissue culture medium depend on exogenous serine for optimal growth, here we report that these cells are less sensitive to serine/glycine depletion in medium containing physiological levels of metabolites. The lower requirement for exogenous serine under these culture conditions reflects both increased de novo serine synthesis and the use of hypoxanthine (not present in the standard medium) to support purine synthesis. Limiting serine availability leads to increased uptake of extracellular hypoxanthine, sparing available serine for other pathways such as glutathione synthesis. Taken together these results improve our understanding of serine metabolism in physiologically relevant nutrient conditions and allow us to predict interventions that may enhance the therapeutic response to dietary serine/glycine limitation.


Assuntos
Neoplasias/metabolismo , Serina/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Proliferação de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Glicina/análise , Glicina/metabolismo , Humanos , Hipoxantina/análise , Hipoxantina/metabolismo , Neoplasias/dietoterapia , Neoplasias/patologia , Purinas/biossíntese , Serina/análise , Regulação para Cima
7.
Insect Biochem Mol Biol ; 138: 103636, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478812

RESUMO

There are several known non-molting mutations of the silkworm, Bombyx mori, including non-molting dwarf (nm-d). Larvae with this mutation hatch normally and start eating leaves, but die before the completion of the first ecdysis. Genetic analysis of the nm-d mutation would contribute to the isolation of essential genes for the larval development of lepidopteran insects. To identify the causative gene of the nm-d locus, we conducted RNA-seq based rough mapping. Using two sets of RNA-seq data, one from a pooled sample of normal larvae, and one from a pooled sample of nm-d larvae, the nm-d locus was narrowed to a 500 kb region. Among the genes located in this region, a nm-d-specific exon loss was identified in the Bombyx homolog of the ATIC (5-aminoimidazole-4-carboxamide ribonucleotide transformylase/Inosine 5'-monophosphate cyclohydrolase) (BmATIC) gene, which catalyzes the final two steps of the de novo purine biosynthetic pathway in mammals. PCR and subsequent sequencing analysis revealed that a region containing exon 9 of the BmATIC gene is deleted in the nm-d larvae. A knockout allele of the BmATIC gene (BmATICKO), that was generated using the CRISPR/Cas9 system, revealed that first instar knockout larvae died while exhibiting the dark brown larval body that is a typical feature of mutants that lack uric acid in the integument. Lethal larvae resulted from crosses between +/BmATICKO moths. The uric acid content in the whole-body of the first instar was drastically reduced in the nm-d larvae compared to normal larvae. These results indicated that the BmATIC gene is responsible for the nm-d phenotype, and that nm-d larvae have a defect in purine biosynthesis, including uric acid. We also discuss the possibility that the BmATIC mRNA is maternally transmitted to eggs. Our results indicated that RNA-seq based mapping using pooled samples is a practical method for the identification of the causative genes of lethal mutations.


Assuntos
Proteínas de Insetos/genética , Mariposas/metabolismo , Mutação , Purinas/biossíntese , Animais , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento
8.
Cancer Res ; 81(19): 4964-4980, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385182

RESUMO

Methylthioadenosine phosphorylase (MTAP) is a key enzyme associated with the salvage of methionine and adenine that is deficient in 20% to 30% of pancreatic cancer. Our previous study revealed that MTAP deficiency indicates a poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC). In this study, bioinformatics analysis of The Cancer Genome Atlas (TCGA) data indicated that PDACs with MTAP deficiency display a signature of elevated glycolysis. Metabolomics studies showed that that MTAP deletion-mediated metabolic reprogramming enhanced glycolysis and de novo purine synthesis in pancreatic cancer cells. Western blot analysis revealed that MTAP knockout stabilized hypoxia-inducible factor 1α (HIF1α) protein via posttranslational phosphorylation. RIO kinase 1 (RIOK1), a downstream kinase upregulated in MTAP-deficient cells, interacted with and phosphorylated HIF1α to regulate its stability. In vitro experiments demonstrated that the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) and the de novo purine synthesis inhibitor l-alanosine synergized to kill MTAP-deficient pancreatic cancer cells. Collectively, these results reveal that MTAP deficiency drives pancreatic cancer progression by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for treating MTAP-deficient disease. SIGNIFICANCE: This study demonstrates that MTAP status impacts glucose and purine metabolism, thus identifying multiple novel treatment options against MTAP-deficient pancreatic cancer.


Assuntos
Reprogramação Celular/genética , Metabolismo Energético , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Purina-Núcleosídeo Fosforilase/deficiência , Purinas/biossíntese , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glicólise , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Camundongos , Modelos Biológicos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/mortalidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico
9.
Mol Biotechnol ; 63(10): 909-918, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34156642

RESUMO

Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.


Assuntos
Engenharia Genética/métodos , Riboflavina/biossíntese , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Fermentação , Fungos/genética , Fungos/crescimento & desenvolvimento , Humanos , Via de Pentose Fosfato , Purinas/biossíntese
10.
Annu Rev Biochem ; 90: 57-76, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153218

RESUMO

I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.


Assuntos
Bioquímica/história , Replicação do DNA , Enzimas , Purinas/biossíntese , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anticorpos Catalíticos/química , Anticorpos Catalíticos/metabolismo , Enzimas/química , Enzimas/metabolismo , História do Século XX , História do Século XXI , Humanos , Masculino , Estados Unidos
11.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33942714

RESUMO

We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans.


Assuntos
Vias Biossintéticas/genética , Metaboloma/genética , Homem de Neandertal/metabolismo , Purinas/biossíntese , Purinas/metabolismo , Animais , Feminino , Edição de Genes , Humanos , Macaca/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Pan troglodytes/metabolismo
12.
Plant Cell ; 33(5): 1615-1632, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793860

RESUMO

TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleotídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ribossomos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Citosol/metabolismo , Inativação Gênica , Genes de Plantas , Fósforo/metabolismo , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Purinas/biossíntese , Pirimidinas/biossíntese , Transcriptoma/genética
13.
Brain ; 144(4): 1230-1246, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33855339

RESUMO

Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Purinas/biossíntese , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Ácido Micofenólico/farmacologia , Temozolomida/farmacologia , Células Tumorais Cultivadas
14.
Nat Commun ; 12(1): 1887, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767207

RESUMO

Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production.


Assuntos
Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus/genética , Staphylococcus/metabolismo , Tioguanina/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Coagulase/deficiência , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Purinas/biossíntese , Proteínas Ribossômicas/biossíntese , Staphylococcus aureus/patogenicidade , Staphylococcus capitis/metabolismo , Staphylococcus epidermidis/metabolismo , Tioguanina/farmacologia , Transativadores/biossíntese
15.
Aging (Albany NY) ; 13(3): 4063-4078, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33493137

RESUMO

Pluripotent stem cells (PSCs) have a unique energetic and biosynthetic metabolism compared with typically differentiated cells. However, the metabolism profiling of PSCs and its underlying mechanism are still unclear. Here, we report PSCs metabolism profiling and identify the purine synthesis enzymes, phosphoribosyl pyrophosphate synthetase 1/2 (PRPS1/2), are critical for PSCs stemness and survival. Ultra-high performance liquid chromatography/mass spectroscopy (UHPLC-MS) analysis revealed that purine synthesis intermediate metabolite levels in PSCs are higher than that in somatic cells. Ectopic expression of PRPS1/2 did not improve purine biosynthesis, drug resistance, or stemness in PSCs. However, knockout of PRPS1 caused PSCs DNA damage and apoptosis. Depletion of PRPS2 attenuated PSCs stemness and assisted PSCs differentiation. Our finding demonstrates that PRPS1/2-mediated purine biosynthesis is critical for pluripotent stem cell stemness and survival.


Assuntos
Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Purinas/biossíntese , Ribose-Fosfato Pirofosfoquinase/genética , Apoptose/genética , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Sobrevivência Celular/genética , Cromatografia Líquida , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Metaboloma , Nucleotídeos de Purina , Purinas/metabolismo , Ribose-Fosfato Pirofosfoquinase/metabolismo
16.
Crit Rev Biochem Mol Biol ; 56(1): 1-16, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179964

RESUMO

The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Purinas/biossíntese , Transdução de Sinais/fisiologia , Monofosfato de Adenosina/metabolismo , Vias Biossintéticas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Humanos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Fosforribosil Pirofosfato/metabolismo , Fosforilação
17.
Hepatology ; 74(1): 233-247, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336367

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS: Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Purinas/biossíntese , Trifosfato de Adenosina/biossíntese , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Taxa de Sobrevida
18.
Mol Cell ; 80(1): 29-42.e10, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857952

RESUMO

(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.


Assuntos
Aminoácidos/biossíntese , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Nucleotídeos/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Retroalimentação Fisiológica , Guanosina Difosfato/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Purinas/biossíntese , Pirimidinas/biossíntese
19.
Immunol Cell Biol ; 98(10): 819-831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32748425

RESUMO

Purines play an integral role in cellular processes such as energy metabolism, cell signaling and encoding the genetic makeup of all living organisms-ensuring that the purine metabolic pathway is maintained across all domains of life. To gain a deeper understanding of purine biosynthesis via the de novo biosynthetic pathway, the genes encoding purine metabolic enzymes from 35 archaean, 69 bacterial and 99 eukaryotic species were investigated. While the classic elements of the canonical purine metabolic pathway were utilized in all domains, a subset of familiar biochemical roles was found to be performed by unrelated proteins in some members of the Archaea and Bacteria. In the Bacteria, a major differentiating feature of de novo purine biosynthesis is the increasing prevalence of gene fusions, where two or more purine biosynthesis enzymes that perform consecutive biochemical functions in the pathway are encoded by a single gene. All species in the Eukaryota exhibited the most common fusions seen in the Bacteria, in addition to new gene fusions to potentially increase metabolic flux. This complexity is taken further in humans, where a reversible biomolecular assembly of enzymes known as the purinosome has been identified, allowing short-term regulation in response to metabolic cues while expanding on the benefits that can come from gene fusion. By surveying purine metabolism across all domains of life, we have identified important features of the purine biosynthetic pathway that can potentially be exploited as prospective drug targets.


Assuntos
Vias Biossintéticas , Preparações Farmacêuticas , Purinas , Vias Biossintéticas/efeitos dos fármacos , Humanos , Purinas/biossíntese
20.
Sci Rep ; 10(1): 10100, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572069

RESUMO

RNA viruses are responsible for a large variety of animal infections. Equine Arteritis Virus (EAV) is a positive single-stranded RNA virus member of the family Arteriviridae from the order Nidovirales like the Coronaviridae. EAV causes respiratory and reproductive diseases in equids. Although two vaccines are available, the vaccination coverage of the equine population is largely insufficient to prevent new EAV outbreaks around the world. In this study, we present a high-throughput in vitro assay suitable for testing candidate antiviral molecules on equine dermal cells infected by EAV. Using this assay, we identified three molecules that impair EAV infection in equine cells: the broad-spectrum antiviral and nucleoside analog ribavirin, and two compounds previously described as inhibitors of dihydroorotate dehydrogenase (DHODH), the fourth enzyme of the pyrimidine biosynthesis pathway. These molecules effectively suppressed cytopathic effects associated to EAV infection, and strongly inhibited viral replication and production of infectious particles. Since ribavirin is already approved in human and small animal, and that several DHODH inhibitors are in advanced clinical trials, our results open new perspectives for the management of EAV outbreaks.


Assuntos
Infecções por Arterivirus/tratamento farmacológico , Equartevirus/metabolismo , Ribavirina/farmacologia , Animais , Antivirais/farmacologia , Infecções por Arterivirus/veterinária , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Doenças dos Cavalos/virologia , Cavalos/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Purinas/antagonistas & inibidores , Purinas/biossíntese , Purinas/farmacologia , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Pirimidinas/farmacologia , RNA/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...